Models and Statistical Inference: The Controversy between Fisher and Neyman–Pearson
نویسندگان
چکیده
The main thesis of the paper is that in the case of modern statistics, the differences between the various concepts of models were the key to its formative controversies. The mathematical theory of statistical inference was mainly developed by Ronald A. Fisher, Jerzy Neyman, and Egon S. Pearson. Fisher on the one side and Neyman–Pearson on the other were involved often in a polemic controversy. The common view is that Neyman and Pearson made Fisher’s account more stringent mathematically. It is argued, however, that there is a profound theoretical basis for the controversy: both sides held conflicting views about the role of mathematical modelling. At the end, the influential programme of Exploratory Data Analysis is considered to be advocating another, more instrumental conception of models.
منابع مشابه
P Values are not Error Probabilities
Confusion surrounding the reporting and interpretation of results of classical statistical tests is widespread among applied researchers. The confusion stems from the fact that most of these researchers are unaware of the historical development of classical statistical testing methods, and the mathematical and philosophical principles underlying them. Moreover, researchers erroneously believe t...
متن کاملThe statistical theories of Fisher and of Neyman and Pearson: A methodological perspective
Most of the debates around statistical testing suffer from a failure to identify clearly the features specific to the theories invented by Fisher and by Neyman and Pearson. These features are outlined. The hybrids of Fisher’s and Neyman–Pearson’s theory are briefly addressed. The lack of random sampling and its consequences for statistical inference are also highlighted, leading to the recommen...
متن کاملAlphabet Soup Blurring the Distinctions Between p ’ s and a ’ s in
Confusion over the reporting and interpretation of results of commonly employed classical statistical tests is recorded in a sample of 1,645 papers from 12 psychology journals for the period 1990 through 2002. The confusion arises because researchers mistakenly believe that their interpretation is guided by a single unified theory of statistical inference. But this is not so: classical statisti...
متن کاملThe Widest Cleft in Statistics - How and Why Fisher opposed Neyman and Pearson
The paper investigates the “widest cleft”, as Savage put it, between frequencists in the foundation of modern statistics: that opposing R.A. Fisher to Jerzy Neyman and Egon Pearson. Apart from deep personal confrontation through their lives, these scientists could not agree on methodology, on definitions, on concepts and on tools. Their premises and their conclusions widely differed and the two...
متن کاملA comparative introduction to statistical inference and hypothesis testing
These are some notes on a very simple comparative introduction to four basic approaches of statistical inference—Fisher, Neyman–Pearson, Fisher/Neyman–Pearson hybrid, and Bayes—from a course on Quantitative & Statistical Reasoning at OU in Fall 2016. In particular, I hope to give a rough understanding of the differences between the frequentist and Bayesian paradigms, though they are not entirel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006